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I. The Chicken from Minsk
In a Soviet-era collection of physics exercises called ”The Chicken from

Minsk” by Yuri Chernyak and Robert Rose [1], one problem recalls air to air
rockets launched from the tail end of a bomber in flight. A rocket with fins
near its tail (like fletch of a ya) is mechanically catapulted, and immediately
”sees itself” oriented tail-first in an enormous head wind. Soon after, the
rocket’s motor ignites... .

Figure 1: Chicken from Minsk experiment-archery version

Here is an archery version of this ”experiment:” The positions of yanone
(point) and hazu (nock) are exchanged on a 104cm long 2015 aluminum ya
with standard fletching. The ya is launched fletch first towards a backstop
14m downrange. The ya flight is videoed at 240 frames per second. The ya is
rather faint and blurry but still discernible on the video. Every sixth frame is
imported into a graphics program. For each frame, the ya is traced by a line
segment, and a graphical arrowhead indicates the end with the hazu. Figure
1 displays the complete sequence of oriented line segments. It amounts to a
time series of ya configurations. The time increment is 6

240
s = 1

40
s. The ya

configurations during the flipping appear foreshortened because the plane of
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the flipping is not vertical. Also notice that the flipping greatly decreases the
speed of the ya. The drag on the ya is increased when its axis is perpendicular
to the direction of flight.

The intuition is simple, from the ya’s point of view: The ya, like the
rocket, ”sees itself” fletch first in a headwind. In figure 1 we see that the ya
initially advances by its whole length in one time increment, so the headwind
has an initial speed of 40m/s. With any small mis-alignment between the ya’s
axis and the direction of the headwind, the headwind catches the fletch and
flips the ya, which continues down range hazu first. This amusing experiment
is a most transparent realization of underlying principles which we engage in
the next section.

A second experiment, less overtly ridiculous, is informed by those same
principles. Figure 2 is a photograph of a fletched ya, 102cm long, fitted with
a ”watakuri” arrowhead improvised in my workshop. This ya is shot from a

Figure 2: Ya with ”watakuri” arrowhead

"watakuri" arrowhead

standard yanone

10 cm

aiming dot

Figure 3: ”Watakuri” arrowhead degrades grouping

15kg yumi at a backstop 10m downrange. At Kai, the tip of the ya kisses an
aiming dot at 6 o’clock. Ten shots are done with the ”watakuri” arrowhead.
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Ten more are done with the watakuri arrowhead replaced by a standard
yanone. Figure 3 is the record of the impacts: A photograph of the backstop
with the arrow holes is imported into the graphics program. The slashes
produced by watakuri shots are traced by the red slits, the holes produced
by normal yanone, by blue dots. The grouping of the watakuri shots is
distinctly poorer. Apparently, the watakuri arrowhead with its broad, wind-
catching shape acts like ”fletching on the wrong end,” a proximate cause of
unstable and erratic arrow flight.

This essay addresses underlying principles of ya aerodynamics beyond
simple intuition. Principles in hand, we may critically evaluate various pref-
erences for preparing ya. For instance: What are the relative merits of for-
ward versus back weighted ya? Does it really matter? How much fletching
do we really need for good ya flight? Are traditional ya under-fletched or
over-fletched?

II. Forward motion and alignment interact
Figure 4 is a snapshot of a flying ya. For a simplified first look, we

assume that the ya at all times is confined to a vertical plane. The white dot

cm

ψ

α
u

Figure 4: Force per unit length along a flying ya

marks its center of mass. The arrow labeled u indicates the magnitude and
direction of the center of mass velocity. The angle α of the shaft relative to
its direction of motion is called its angle of attack, as depicted in figure 4.
The angle between the direction of velocity u and the horizontal is denoted
by ψ. We’ll call it the angle of motion. There is an interactive dance between
the two angles α and ψ induced by aerodynamic forces, the role of gravity
being small. The small arrows above the ya shaft qualitatively indicate the
aerodynamic force per unit length acting along the shaft. The projection of
a force arrow onto the direction opposite u is called drag. The projection in
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the orthogonal direction counterclockwise relative to u is called lift. Given
the angle of attack as shown, the lift ought to be upwards. The force arrows
along the. fletched section should be longer than the rest. The arrows drawn
in figure 4 reflect this ”common sense.” As is well known in mechanics, the
center of mass moves as if it were a point particle subject to the collective
actions of all the forces along the entire length of ya. Due to the ”swept back”
orientations of the force arrows, the collective force slows down the arrow.
Simultaneously, the upward lift increases the angle of motion ψ. In addition,
the aerodynamic forces induce a pivoting of the arrow shaft about its center
of mass. The extra large force arrows along the fletched section behind the
center of mass exert a clockwise torque that tends to decrease the ”point up”
attitude of the ya relative to its velocity u. If the ya is ”point down” relative
to its direction of motion, there is a counterclockwise torque that tends to
decrease the ”point down” attitude. In summary, fletching behind the center
of mass induces a restoring torque that tries to align the ya with its velocity.
Fletching front of center induces a destabilizing torque so the tendency is to
pivot away from alignment. Figure 5 visualizes the physical situation of the
Chicken from Minsk rocket ”experiment.” A watakuri arrowhead produces
the same kind of ”flipping” torque. In practice, the flipping induced by a
bladed arrowhead is countermanded by sufficiently large fletching near the
nock. Apparently, the fletching of the ya in figure 2 is not quite big enough to
suppress the destabilizing tendencies of the watakuri arrowhead. In summary,

u

Figure 5: Lift generated torque induces flipping in the Chicken from Minsk
”experiment”

we’ve outlined the qualitative story of how the angles of attack and motion
are in a ”dance” with each changing the other.
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Can we do a quantitative analysis? Yes, but not by simple use of first
principles. The onrushing headwind seen by the ya is disrupted by the ya
itself. The disruptions are far too complicated for simple analysis of aero-
dynamic forces. Aeronautical engineers traditionally rely on wind tunnel
tests. In particular, Takeshi Miyazaki et al [2] and Julio Ortiz [3] measure
the aerodynamic forces and torques on an Olympic arrow in a wind tunnel
at different angles of attack. With this information, the interactive dynamics
between the angles of attack and motion becomes clear. In the appendix, we
review the measurements and the simple theory enabled by them.

Figure 6 is a qualitative movie of a ”porpoising” ya based on this analysis.
The angle of attack cycles through tip down and tip up attitudes. The angle
of motion undergoes a collateral cycle, which induces the elevation of the ya
to cycle as well. Notice that the ya is tip down at its highest elevation and tip
up at the lowest. The difference between the highest and lowest elevations
has been exaggerated for clarity. For the Olympic arrow tested in the wind
tunnel, we can crunch the numbers to see that the elevation changes induced
by the oscillating angle of attack are on the order of a few millimeters. Quite
insignificant.

Figure 6: A movie of ”porpoising.”

III. Less is more
The questions (i) Forward versus back weighted ya? and (ii) What size of

fletch? are informed by the aerodynamics. We know that fletching behind the
ya’s balance point stabilizes straight, point forward ya flight. Presumably, the
farther behind, the better. The Olympic arrow tested by Takeshi Miyazaki
et al has very small fletch in comparison to Kyudo ya: Length on the order of
5cm and height on the order of 1cm. Nevertheless, the total lift force induced
by a nonzero angle of attack acts as if it is concentrated just in front of the
fletching at a point called the lift center. The arrow flight remains stable, so
long as the the center of mass remains well forward of the lift center.

Now, let’s look at Kyudo ya: Traditional take-ya have very light yanone
so they balance very nearly at their midpoints. Traditional fletch are on the
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Figure 7: ”Standard” and ”low profile” fletching

order of 15cm long and between 1.0cm and 1.5cm high. Yes, the ya is longer
than the Olympic arrow, but even so, ya fletch are proportionally longer
and higher. The center of lift remains near the fletchings. Forward or back
weighting of the ya which moves the center of mass a few centimeters doesn’t
change the forward displacement of the center of mass from the lift center by
much. You can add enough weight to the yanone so the balance point moves
significantly forward, but who wants to turn a 30gm ya into a 40gm ya? A
center-balanced ya with no weight added is a reasonable choice after all. Is
it possible that the fletch can be reduced a lot, but ample stability remains?
Figure 7 is a photograph comparing ”standard” and ”low profile” fletching.
The ya with the low profile fletching is 104cm long, weighs 32.5gm, and its
stiffness is 17% greater than a 2015 aluminum shaft. The fletch is 14.4cm
long but only 6mm high. It is shot from a 15kg yumi. I expected decent ya
flight. I got close to perfect arrow flight with no discernible ”porpoising” or
”fishtailing” (fishtailing is like porpoising but the pivoting is about a vertical
instead of horizontal axis.). I’m not going to say that such low profile fletching
”caused” good ya flight. Most likely, a ya with appropriate stiffness relative
to the strength of the yumi and the archer’s yazuka flies very well with
reduced fletching which still provides ample stability.

Appendix. A simple model of aerodynamic alignment aided by
wind tunnel tests

Figure 8 is a snapshot of a ya in flight. We assume that the ya is confined
to the vertical x, z plane. The degrees of freedom are x, the ya’s center of
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mass position, and the angle θ of the ya’s axis with respect to the horizontal.
The ya is subject to forces along its length. Let s, 0 < s < l be the distance
along the ya from its nock end (tail). Let φ(s, t) denote the force per unit
length as a function of s and time t. For now, we assume it is given. The
Lagrangian for the dynamics of x = x(t) and θ = θ(t) is

ψ

θα

x

r

z

x

θ

u

Figure 8: The arrow’s degrees of freedom

L =
1

2
m|ẋ|2 +

1

2
Iθ̇2 +

∫ l

0

φ · (x + (s− S)r̂)ds. (1)

Here, m is the mass of the ya. I is its moment of inertia about the perpendic-
ular axis through the center of mass. r̂ denotes the unit vector pointing from
the ya’s tail to its head. S denotes the distance of the ya’s center of mass
from the nock end. Notice that y(t) := x(t) + (s− S)r̂ is the trajectory of a
material point with distance s from the nock end. The Lagrangian equations
of motion are

mu̇(t) = f(t) :=

∫ l

0

φ(s, t)ds, (2)

Iθ̈(t) = M(t) :=

∫ l

0

(s− S)θ̂ · φ(s, t)ds. (3)

u := ẋ is the ya’s velocity. We recognize f as the total force acting on the
ya. The content of (2) is that the center of mass moves like a point particle
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subject to this total force. In (3), θ̂ is the unit vector normal to the shaft,
obtained by rotating r̂ by π

2
counterclockwise radians. We recognize M as

the torque applied about the center of mass.
The alignment of the ya with its direction of flight is due to aerodynamic

forces, gravity playing a small role. We assume that the net force f and
the torque M have aerodynamic origins. The aerodynamics is complicated.
There are no simple formulas for force and torque based on first principles.
Instead, the first principles we do know provide a framework for measure-
ments. These have been done for arrow aerodynamics by Takeshi Miyazaki
et al in [1] and Julio Ortiz et al in [2].

The framework begins with scale covariance: The aerodynamic force de-
pends on dimensional quantities, most strongly on air density ρ, arrow speed
u := |u|, and the arrow’s cross sectional area σ. The only combination with
the units of force is ρσu2. Hence, the force is represented by

f =
1

2
cρσu2, (4)

where c is a dimensionless two-vector. The component cd in the direction
opposite u is called the drag coefficient. The component cl in the orthog-
onal direction obtained by counterclockwise rotation of u is called the lift
coefficient. We have

c = −cdû + clJû, (5)

where û is the unit vector in the u direction, and J is rotation by π
2

coun-
terclockwise radians. The aerodynamic torque M is represented by

M =
1

2
cmρσlu

2. (6)

Here, ρσlu2 carries the units of torque (force times length), so cm is another
dimensionless quantity, called the pitching moment coefficient.

For a given ya flying at a given speed, the drag, lift and pitching coeffi-
cients depend on the angle of attack α. Referring to figure 8, the angle of
attack is the angle of the ya axis relative to its direction of motion. [2] and
[3] report their measurements of cd, cl, cm as functions of α for typical arrows
used in Olympic competition. In their elegant test setup, small cylindrical
magnets are inserted in the shaft, which allows them to ”levitate” the arrow
in the wind tunnel by applying a magnetic field. By adjusting the magnetic
field,, they can induce a given angle of attack, and deduce the force and
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Figure 9: The Easton ACE arrow is 62.5cm long, with 5.25mm mean diam-
eter. Two points are used: A standard issue ”bullet” point and a specially
machined ”streamlined” point. It is evident that the type of point had little
influence on test results. The fletching is ”spin wing vanes” typically used
by Olympic archers. The total mass of the assembled arrow with point and
fletchings is 14.3gm. The air speed in the wind tunnel is 31.4m/sec. This is
close to half of the typical arrow speed in Olympic competition.

torque required to maintain it. Figure 9 reproduces their graphs of cd, cl, cm
versus α in [1]. Notice that the graphs of lift and pitching coefficients are
asymptotically linear as α→ 0. We have

cl(α) ∼ aα, cm(α) ∼ −bα. (7)

From the graphs of figure 9b, we discern values of the proportionality con-
stants (converted to inverse radians):

a ≈ 35.8 rad−1, b ≈ 17.9 rad−1. (8)

What do the negative slopes of the pitching coefficient graphs mean? Figure
10 depicts the ya with a small angle of attack. The torque M is due mainly
to the lifting force. The lift center is the point on the shaft so that the
total lift force concentrated there gives the observed torque. Let ∆S be the
displacement of this lift center from the center of mass, negative if the lift
center is behind the center of mass. The torque reckoned in this way is

1

2
ρσu2∆Sa. (9)
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Figure 10: Negative torque due to center of lift behind center of mass

The torque according to (6), (7) is

−1

2
ρσu2lb. (10)

Equality of (9) and (10) yields

∆S = − b
a
l ≈ −

(
17.9

35.8

)
(62.5cm) ≈ −31cm (11)

for the arrow with length 62.5cm. Indeed Takeshi Miyazaki et al report that
the center of lift is ”about 30cm behind the center of mass.”

Taking the dependences of drag, lift and pitching coefficients upon the
angle of attack α as given, equations (2), (3) become a closed dynamical
system for u and θ. We may represent u by its magnitude (speed) u and its
angle ψ relative to the horizontal, as depicted in figure 1. The equations for
u, ψ, θ are

u̇ = −ρσu
2

2m
cd(α), (12)

ψ̇ =
ρσu

2m
cl(α), (13)

θ̈ =
ρσlu2

2I
cm(α). (14)

Here, α is related to θ and ψ by

θ = ψ + α, (15)

which we see by inspection of figure 6.
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A simple approximate reduction informs the dynamics of the ya’s align-
ment with its direction of motion. First, we ignore the decay of the speed u.
With u taken to be constant, the prefactors in (13) and (14) are likewise con-
stant, independent of time. Next, we evoke the linearizations of cl(α), cm(α)
as in (7), valid for small angle of attack. In summary, the reductions of (13)
and (14) are

ψ̇ ∼ Aα, A :=
ρσu

2m
a, (16)

θ̈ ∼ −Bα, B :=
ρσlu2

2I
b. (17)

From (15), (16), (17) we find that the dynamics of α is

α̈ + Aα̇ +Bα = 0. (18)

If B > 0 (center of lift behind center of mass), (18) represents damped har-
monic oscillations. A physical picture of the dynamics: The lift force concen-
trated behind the center of mass induces a restoring torque that aligns the
arrow with its direction of motion. Simultaneously, it changes the direction
of motion as well, and this the origin of the damping Aα̇ in (18).

As we shall see, the oscillator (18) is underdamped with B >
(
A
2

)2
for

typical fletched arrows. In this case, the solutions for α are

α = e−
A
2
t cosωt, ω :=

√
B −

(
A

2

)2

, (19)

modulo a multiplicative constant, and translation of the origin of time. From
the information in the caption of figure 7, we can work out the values of
constants A and B for the test setup:

A ≈ 1.02 sec−1, B ≈ 307 sec−2. (20)

The oscillation frequency in Hertz is

ν =
ω

2π
≈ 2.79 sec−1. (21)

The e-folding time for the decay of the oscillations is

2

A
≈ 1.96 sec. (22)
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As noted in the caption of figure 9, the airspeed of the wind tunnel is about
half of the typical arrow speeds in Olympic competition. [1] and [2] haven’t
reported measurements in their magnetic suspension facility at these higher
speeds, so we resort to a rough approximation, in which the lift and pitching
coefficients have the same dependences upon the angle of attack as before.
Since A ∝ u and B ∝ u2, we find that the frequency ν scales by the ratio
of speeds. In a test of shot arrows reported in [3], the initial arrow speed
was 56.4m/sec, which is 1.8 times faster than the wind tunnel speed. Our
estimate of the frequency for the higher speed arrow is ν ≈ 5.02 sec−1. The
decay time of the oscillations scales with the reciprocal of the speed ratio,
and for the faster arrow it is 2

A
≈ 1.09 sec. An arrow shot at a target

with the range of 60m will do about five ”porpoising” oscillations, and these
oscillations decay to less than half of their initial amplitude by the time the
arrow lands.

As the angle of attack oscillates, so does the center of mass elevation.
Given the speed u and angle of motion ψ, the vertical component of center
of mass velocity u is

w = u sinψ,

or for small ψ,
w ∼ uψ. (23)

The center of mass elevation y satisfies

ẏ = w ∼ uψ. (24)

From (23) and (16) we have
ÿ ∼ uAα. (25)

Given α as in (19), the solution for y which decays to zero as t→∞ is

y ∼ uA

B
e−

A
2
t cos(ωt+ ζ), (26)

where the phase shift ζ is

ζ = 2 arctan

(
2ω

A

)
. (27)

Here, we’ve continued treating u as a constant. The pre-factor uA
B

carries
the unit of length, as it should. It’s meaning: If the oscillations in the
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angle of attack have an amplitude of αo radians, the elevation oscillates with
amplitude

yo =
uA

B
αo. (28)

Recalling that A is proportional to u and B proportional to u2, we see that
the amplitude of elevation oscillations is independent of arrow speed. For
the Olympic arrow tested in the wind tunnel, flying at 31.4m/s, let’s say the
”porpoising” oscillation has an amplitude αo = 1 deg ≈ .0176 rad. From the
values of A,B in (20), we find that the elevation oscillates with amplitude

yo ≈
(3140cm s−1)(1.01s−1)

(307s−2)
(.0176) cm ≈ .177cm. (29)

Quite insignificant.
Let’s look at the meaning of the phase shift ζ in (27). Porpoising os-

cillations of typical fletched arrows are underdamped, with 2ω
A
>> 1. For

instance, the test case with A and B as in (20) has 2ω
A
≈ 34.4. In this case,

the phase shift ζ is near π. The porpoising and elevation oscillations are one
half cycle out of phase. Figure 6 is a qualitative movie of the ya during one
cycle of ”porpoising.”
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